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Abstract
The amplitude, phase and state of polarization of an electromagnetic
monochromatic plane wave is expressed in terms of a two-component (SU(2))

spinor, which can be represented by a tangent vector to the Poincaré sphere.
It is shown that the Hermitian interior product between spinors involves the
parallel transport of tangent vectors along the geodesics of the sphere and
that two waves are in phase, according to Pancharatnam’s definition, when the
tangent vectors to the sphere representing the two waves are parallel to each
other along the great circle arc joining the corresponding points of the sphere.

PACS numbers: 02.40.Hw, 03.50.De, 42.25.Ja

1. Introduction

Many years ago, Pancharatnam [1] studied the superposition of light beams, making use of
the fact that the state of polarization of a light beam can be represented by a point of the
Poincaré sphere. According to Pancharatnam’s definition, two elliptically polarized beams
are in phase when the intensity of their superposition has its maximum possible value. Then,
when a given beam is decomposed as the superposition of two elliptically polarized beams,
the relative phase of these two beams is related to the area of the spherical triangle on the
Poincaré sphere whose vertices are the points corresponding to the two beams and the point
diametrically opposite to the point corresponding to the original beam.

As pointed out in [2], the results of Pancharatnam [1] can be related to the notion of parallel
transport and Pancharatnam’s phase is somewhat similar to the adiabatic phase of quantum
mechanics. However, there is a fundamental difference between the phases appearing in these
two contexts. The adiabatic phase in quantum mechanics arises when one considers a slow
change in the Hamiltonian, and this change can be represented by a curve in the parameter
space of the Hamiltonian; on the other hand, when two polarized beams are superposed, the
intensity of the resulting beam can be related to the geodesic of the Poincaré sphere joining
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the points corresponding to the polarization states of the two beams being superposed, but this
geodesic is just an auxiliary object, not the curve corresponding to an actual process leading
from one polarization state to the other.

The aim of this paper is to show that the results of [1] can be readily obtained by
representing a polarized beam by a two-component spinor. The possibility of associating a
two-component spinor with a polarized beam is present in [2]; however, in [2] no meaning
is assigned to the overall complex factor of the spinor (in other words, only the ratio of the
components of the spinor, e−iφ cot 1

2θ , is associated with a point of Poincaré’s sphere). As we
show below, the phase of this overall factor defines the direction of a tangent vector to the
unit sphere and these tangent vectors allow us to speak naturally about the concept of parallel
transport.

In section 2 we present the required formalism, starting from the basic notions about two-
component spinors found in elementary quantum mechanics textbooks (for a more detailed
treatment, see, e.g., [3]). As we shall show, the parallel transport of vectors tangent to a
sphere is always present in the interior product of two-component SU(2) spinors. In section 3,
we show that the components of a monochromatic plane wave can be explicitly written in
a convenient way in terms of a two-component spinor that fully determines the amplitude,
polarization and phase of the wave, in such a way that the intensity of the wave is proportional
to the interior product of the spinor with itself. We also show that if two waves are in phase,
according to Pancharatnam’s definition, the angles made by the tangent vectors to the Poincaré
sphere representing the waves with the great circle arc joining the corresponding points of the
sphere, do coincide.

2. Two-component spinors

A two-component spinor

ψ =
(

ψ1

ψ2

)
(1)

(with ψ1, ψ2 ∈ C) defines a real vector Rψ = (R1, R2, R3), with

Ri = ψ †σiψ (2)

(i = 1, 2, 3), where σi are the Pauli matrices, and a complex vector Mψ = (M1,M2,M3),
with

Mi = ψ tεσiψ, (3)

where

ε ≡
(

0 1
−1 0

)
(4)

and ψ t is the transpose of ψ . An explicit computation shows that {Re Mψ, Im Mψ, Rψ } is a
right-handed orthogonal basis with |Re Mψ |2 = |Im Mψ |2 = |Rψ |2 = ψ †ψ (see equations (6)
and (7)). Note that the spinors ψ and −ψ define the same vectors: R−ψ = Rψ and
M−ψ = Mψ .

For any given rotation in three dimensions, there exists a matrix U ∈ SU(2), defined
up to sign, such that the ordered set {Re MUψ, Im MUψ, RUψ } coincides with the ordered set
formed by the images under the rotation of {Re Mψ, Im Mψ, Rψ }. (This corresponds to the
well-known homomorphism between SO(3) and SU(2).)
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Parameterizing the components of ψ in the form

ψ = √
re−iχ/2

(
e−iφ/2 cos 1

2θ

eiφ/2 sin 1
2θ

)
, (5)

one readily finds that

Rψ = r(sin θ cos φ, sin θ sin φ, cos θ) = rer (6)

and

Mψ = re−iχ [(cos θ cos φ, cos θ sin φ,−sin θ) + i(−sin φ, cos φ, 0)]

= re−iχ (eθ + ieφ)

= r[(cos χeθ + sin χeφ) + i(−sin χeθ + cos χeφ)], (7)

where {er , eθ , eφ} is the orthonormal basis induced by the spherical coordinates.
Since Re Mψ and Im Mψ are orthogonal to Rψ , the vectors Re Mψ and Im Mψ can be

regarded as tangent vectors at the point Rψ to the sphere of radius r centered at the origin.
Equations (7) show that the vectors Re Mψ and Im Mψ are obtained by rotating the orthogonal
vectors reθ and reφ through an angle χ .

Owing to the fact that Im Mψ is determined by Rψ and Re Mψ (namely, Im Mψ =
Rψ × Re Mψ/|Rψ |), a nonzero spinor ψ can be represented geometrically by a tangent vector
(Re Mψ) at a point of a sphere (given by Rψ ). (Equivalently, ψ is represented by a flag [4];
the flagpole is Rψ and the flag lies on the plane spanned by Rψ and Re Mψ .)

Apart from the (usual) Hermitian interior product between spinors, α†β, which is invariant
under SU(2) transformations, there is an antisymmetric bilinear interior product given by αtεβ,
which is also invariant under SU(2) transformations. These two interior products are related
in the following manner. Since εt = −ε and ε2 = −1, we have

α†β = αtβ = αtεtεβ = (εα)tεβ,

hence, by defining the mate (or conjugate), α̂, of the two-component spinor α by

α̂ ≡ −εα, (8)

we find that

α†β = −α̂tεβ and ˆ̂α = −α. (9)

Hence,

α̂†β = αtεβ (10)

and

α̂†α = 0. (11)

In this sense, α̂ is orthogonal to α. (The minus sign in definition (8) is included so that the

mate of
(

1
0

)
is

(
0
1

)
.) It may be noted that the components of the complex vector M, defined by

equation (3), can be expressed in the form Mi = ψ̂ †σiψ (cf equation (2)).
The mate of ψ is another spinor (which transforms in the same way as ψ under SU(2)),

and in the case of spinor (5) one finds that

ψ̂ = √
reiχ/2

(−e−iφ/2 sin 1
2θ

eiφ/2 cos 1
2θ

)
= √

re−i(π−χ)/2

(
e−i(φ+π)/2 cos 1

2 (π − θ)

ei(φ+π)/2 sin 1
2 (π − θ)

)
, (12)

which is of form (5) with (φ, θ, χ) replaced by (φ + π, π − θ, π − χ); therefore, Rψ̂ = −Rψ

and Mψ̂ = −Mψ .
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From equation (9) one finds that α†β = 0 if and only if β is proportional to α̂ (or,
equivalently, α is proportional to β̂), which means that Rα is antiparallel to Rβ . Owing to
the antisymmetry of ε, the set {α, β} is linearly independent if and only if αtεβ �= 0 or,
equivalently, if and only if α̂†β �= 0. In particular, since for any α �= 0, α†α �= 0, it follows
that for any α �= 0, {α, α̂} is linearly independent (and, hence, an orthogonal basis for the
two-component spinors).

Given a linearly independent set of spinors, {α, β}, an arbitrary spinor, ψ , can be expressed
in the form

ψ = c1α + c2β, (13)

for some complex scalars c1, c2. Owing to equation (11) we see that, for instance,

α̂†ψ = c1α̂
†α + c2α̂

†β = c2α̂
†β,

hence,

c2 = α̂†ψ

α̂†β
. (14)

Similarly, one obtains

c1 = − β̂†ψ

α̂†β
, (15)

using the fact that

β̂†α = β tεα = (β tεα)t = αtεtβ = −αtεβ = −α̂†β

(see equation (10)). Thus, we obtain the decomposition

ψ = 1

α̂†β
[−(β̂†ψ)α + (α̂†ψ)β]. (16)

In particular, if β = α̂, equation (16) reduces to

ψ = 1

α†α
[(α†ψ)α + (α̂†ψ)α̂], (17)

which reflects the fact that {α, α̂} is an orthogonal basis.

2.1. Geometrical interpretation of the interior product of two spinors

Using the fact that each spinor can be represented by means of a tangent vector to a sphere,
the interior product between two unit spinors can be related to some geometric properties of
the corresponding tangent vectors. Furthermore, since the interior product α†β is invariant
under SU(2), these geometric properties must be invariant under rotations about the center of
the sphere.

We shall consider two unit spinors, α, β (that is, α†α = 1 = β†β), which means that α

and β are represented by tangent vectors to the unit sphere. There exists a unique U ∈ SU(2)

that maps α into
(

1
0

)
. Letting γ ≡ Uβ and expressing γ in form (5), we have

α†β = (Uα)†Uβ =
(

1
0

)†

e−iX/2

(
e−i�/2 cos 1

2�

ei�/2 sin 1
2�

)
= e−i(X+�)/2 cos 1

2�, (18)

where �, � are the spherical coordinates of the point of the sphere corresponding to γ (see

equation (6)). Since the vector R corresponding to the spinor
(

1
0

)
is (0, 0, 1), the north pole of

the sphere, the angle � is equal to the angle between the points of the sphere corresponding
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R
R

Figure 1. The unit spinors α and β are represented by tangent vectors to the unit sphere at the
points Rα and Rβ , respectively. The modulus of the interior product α†β depends on the angle
� between Rα and Rβ , and its phase is determined by the angles � and X made by the tangent
vectors corresponding to α and β and the great circle arc that goes from Rα to Rβ .

to α and β (and, hence, also equal to the distance between these points measured along the
great circle arc passing through them, see figure 1). (That is, Rα · Rβ = cos � and, therefore,
1 + Rα · Rβ = 2|α†β|2. Making use of this last relation one can prove Wigner’s theorem in
the case of a two-dimensional Hilbert space [5].)

The vector Re M defined by the spinor
(

1
0

)
is equal to (1, 0, 0) (see equations (7)); hence,

this vector makes an angle −� with the tangent vector to the great circle arc joining the north
pole with Rγ . Therefore, the tangent vector Re Mα makes an angle −� with the tangent
vector to the great circle arc that goes from Rα to Rβ . Similarly, since the angle X appearing
in equation (18) is the angle between Re Mγ and eθ , the tangent vector Re Mβ makes an angle
equal to X with the tangent vector to the great circle arc joining Rα and Rβ (see figure 1). Thus,
from equation (18), one concludes that the interior product α†β is a complex number whose
modulus is the cosine of one-half of the angle between the points of the sphere corresponding
to α and β, and its phase is one-half of the difference between the angles made by Re Mα and
Re Mβ with respect to the geodesic of the sphere going from Rα to Rβ .

In a similar manner, one finds that

α̂†β = (Uα̂)†Uβ =
(

0
1

)†

e−iX/2

(
e−i�/2 cos 1

2�

ei�/2 sin 1
2�

)
= ei(�−X)/2 sin 1

2�, (19)

where the angles �, � and X have the same meaning as above.

3. The electric field of a monochromatic plane wave

The (real) electric field of an elliptically polarized monochromatic plane wave propagating in
the z-direction is of the form

E = a cos
(
ωt − kz + 1

2χ
)

i + b sin
(
ωt − kz + 1

2χ
)

j, (20)

where a, b are real constants, with |a| � |b|, ω and k are the angular frequency and wave
number of the wave, respectively, provided that the axes of the ellipse are aligned with the
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coordinate axes. The factor 1/2 accompanying the phase χ is introduced for later convenience.
Hence, in the general case, denoting by φ/2 the angle made by the major axis of the ellipse
with the x-axis, we have

E = [
a cos 1

2φ cos
(
ωt − kz + 1

2χ
) − b sin 1

2φ sin
(
ωt − kz + 1

2χ
)]

i

+
[
a sin 1

2φ cos
(
ωt − kz + 1

2χ
)

+ b cos 1
2φ sin

(
ωt − kz + 1

2χ
)]

j. (21)

Owing to the symmetry of the ellipse, it suffices to consider values of φ between 0 and 2π .
The ellipticity, b/a, can be expressed in the form

b

a
= tan

(
π

4
− θ

2

)
, (22)

for some θ ∈ [0, π ] (since |b/a| � 1). The ratio b/a is positive for 0 � θ � π/2 (in which
case the wave has right-hand polarization) and b/a is negative for π/2 � θ � π (then the wave
has left-hand polarization). In this way, θ = 0 and θ = π correspond to circular polarization,
while θ = π/2 gives linear polarization. Making use of equation (22), equation (21) can be
rewritten in the form

E = A
{[

cos 1
2θ cos

(
ωt − kz + 1

2χ + 1
2φ

)
+ sin 1

2θ cos
( − ωt + kz − 1

2χ + 1
2φ

)]
i

+
[

cos 1
2θ sin

(
ωt − kz + 1

2χ + 1
2φ

)
+ sin 1

2θ sin
( − ωt + kz − 1

2χ + 1
2φ

)]
j
}
,

(23)

where A is a real constant.
By considering the angles θ and φ as spherical coordinates in the usual manner (i.e., θ as

the polar angle and φ as the azimuthal angle), each pair of values (θ, φ) defines a point of a
sphere, which in this context is called Poincaré’s sphere [6–8]. Hence, a point of Poincaré’s
sphere determines the state of polarization. A set of parameters more commonly employed to
specify the polarization of a wave is given by the Stokes parameters, s0, s1, s2, s3, which are
related to the angles θ and φ by means of [6, 7] (see also [1] and the references cited therein),

(s1, s2, s3) = s0(sin θ cos φ, sin θ sin φ, cos θ), (24)

where s0 is the total flux density.
Thus, the nonzero components of the electric field are given by

Ex + iEy = A
[
cos 1

2θ ei(ωt−kz+χ/2+φ/2) + sin 1
2θ ei(−ωt+kz−χ/2+φ/2)

]
,

Ex − iEy = A
[
cos 1

2θ e−i(ωt−kz+χ/2+φ/2) + sin 1
2θ e−i(−ωt+kz−χ/2+φ/2)

]
,

(25)

or, in terms of the unit two-component spinor

o =
(

o1

o2

)
= e−iχ/2

(
e−iφ/2 cos 1

2θ

eiφ/2 sin 1
2θ

)
(26)

and its mate

ô =
(

ô1

ô2

)
= eiχ/2

(−e−iφ/2 sin 1
2θ

eiφ/2 cos 1
2θ

)
(27)

(cf equations (5) and (12)), we have

Ex + iEy = A(e−i(ωt−kz)o2 + ei(ωt−kz)ô2),

Ex − iEy = A(e−i(ωt−kz)o1 − ei(ωt−kz)ô1).
(28)

Thus, all the information about the amplitude of the wave is given by A, and the polarization
and phase are given by the two-component unit spinor o.

As pointed out in section 2, two unit spinors, o and −o, are represented by the same
tangent vector to the unit sphere, but the electric field of a monochromatic plane wave changes
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sign when the spinor o does (see equation (28)). This behavior is directly related to the
two-to-one relation between SU(2) and SO(3). In the present context, the action of the group
SU(2) on the two-component spinors corresponds to changes in the state of polarization of
the wave, which are represented by rotations on the Poincaré sphere.

The time average of the square of the electric field (28) is given by

〈E2〉 = A2(ô2o1 − ô1o2) = A2o†o = A2, (29)

where we have made use of equation (9). By defining the two-component spinor ψ by

ψ ≡ Ao, (30)

we can rewrite equation (28) as

Ex + iEy = e−i(ωt−kz)ψ2 + ei(ωt−kz)ψ̂2,

Ex − iEy = e−i(ωt−kz)ψ1 − ei(ωt−kz)ψ̂1 (31)

(cf [2], equation (2)). Then,

〈E2〉 = ψ †ψ. (32)

3.1. Superposition of monochromatic waves

Now, let us consider two monochromatic plane waves of the same frequency propagating in
the same direction, corresponding to the spinors A1α and A2β, where A1, A2 are positive real
numbers and α, β are unit spinors. From equations (28) we see that

ψ = A1α + A2β

(cf equation (13)) is the spinor corresponding to the superposition of these waves. Writing
ψ = Aγ , where γ is a unit spinor and A is a positive real number, from equations (15) and
(19) we see that

A2
1 = |β̂†ψ |2

|α̂†β|2 = A2 |β̂†γ |2
|α̂†β|2 = A2 sin2 1

2a

sin2 1
2c

,

where a is the angle between the points of the unit sphere corresponding to β and γ and c
is the angle between the points corresponding to α and β. According to equation (29), this
means that the intensity, I, of the superposition of the two waves is related to the intensity, I1,
of the wave represented by A1α by I1 = I sin2 1

2a
/

sin2 1
2c.

Similarly, making use of equation (14), we obtain

A2
2 = |α̂†ψ |2

|α̂†β|2 = A2 |α̂†γ |2
|α̂†β|2 = A2 sin2 1

2b

sin2 1
2c

,

where b is the angle between the points of the unit sphere corresponding to α and γ . Thus,
I2 = I sin2 1

2b
/

sin2 1
2c (cf [1], equation (3)).

The amplitudes A1, A2 and A are also related by

A2 = ψ †ψ = (A1α + A2β)†(A1α + A2β) = A2
1 + A2

2 + 2A1A2Re(α†β). (33)

Thus, making use of equation (18), we have

A2 = A2
1 + A2

2 + 2A1A2 cos 1
2� cos 1

2 (X + �), (34)

which shows that, according to Pancharatnam’s definition, the waves being superposed are in
phase if and only if X = −�. This means that the angles made by Re Mα and Re Mβ with
the great circle arc joining the points of the unit sphere corresponding to α and β, coincide.
In other words, Re Mβ is obtained by transporting Re Mα parallel to itself along the geodesic
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joining the corresponding points of the unit sphere. Then, the fact that the sphere has a nonzero
constant curvature implies that if α is in phase with β, and β is in phase with ζ , then there is
a phase difference between α and ζ equal to one-half of the area of the geodesic triangle with
vertices at Rα, Rβ and Rζ [2].

Equation (33) shows that there is no constructive or destructive interference between the
waves if and only if α†β is equal to zero or is pure imaginary.

As shown in the preceding section, α†β is equal to zero if and only if β is proportional to α̂,
which means that the points of the Poincaré sphere corresponding to α and β are diametrically
opposite (this conclusion also follows from equation (18)); in this case, it is said that the two
waves have opposite polarization [1].

4. Concluding remarks

Equations (24) show that in the case of a completely polarized wave, the Stokes parameters
depend on three independent variables; in contrast, an arbitrary two-component spinor contains
four independent real parameters that fully determine the components of the wave. Since the
amplitude, polarization state and phase of a monochromatic plane electromagnetic wave is
encoded in a two-component spinor, it would be interesting to find, for instance, the effect
of the transmission of a wave through an anisotropic medium, which must be represented by
some mapping of the spinor space into itself.
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